HDD Raid или SSD Raid: основные отличия, которые вы должны знать

В прошлом материале мы уже рассмотрели вопрос о том “Применим ли RAID на SSD” на примере накопителей Kingston, но сделали это только в рамках нулевого уровня. В текущей статье мы разберем варианты использования профессиональных и домашних NVMe-решений в самых популярных типах RAID-массивов и расскажем о совместимости контроллеров Broadcom с накопителями Kingston.

⇡#Немного о RAID 0 из SSD

Говоря об улучшении производительности дисковой подсистемы, мы прежде всего имеем в виду RAID-массивы уровня 0, собранные из двух накопителей, как наиболее простые и распространённые. Именно такие массивы имеют наибольший смысл с точки зрения максимизации быстродействия. За счёт разбиения данных на блоки фиксированной длины и чередования дисков для их хранения достигается кратный (в теории) рост быстродействия. Однако при этом снижается надёжность хранения информации, так как выход из строя хотя бы одного диска приводит к потере всех данных. Общая ёмкость массива RAID 0 равна сумме объёмов всех входящих в него накопителей, а для его создания можно использовать два, три диска или больше. В силу явного масштабирования производительности и отсутствия потерь в ёмкости RAID 0 продолжает оставаться самым популярным вариантом RAID-массива.

Массивы уровня RAID 0 поддерживаются большинством материнских плат средней и высшей ценовой категории. Однако надо иметь в виду, что наилучшим выбором для создания RAID 0 из SSD будут материнские платы на базе интеловских чипсетов последнего поколения. Преимущества Intel H87, B87 и Z87 заключаются в том, что они имеют поддержку более двух портов SATA 6 Гбит/с с одной стороны, а с другой — работают под управлением продвинутого драйвера Intel Rapid Storage Technology (RST). Этот драйвер специально оптимизирован для RAID 0-массивов из SSD и предлагает уникальные на сегодняшний день возможности: поддержку команды TRIM и прямой доступ к накопителям диагностическим и обслуживающим утилитам для всех входящих в массив дисков. Никакие другие контроллеры подобной функциональности в настоящее время не предлагают. В остальных платформах RAID-массив будет представляться в системе в виде виртуального физического диска без возможности какого-либо доступа к входящим в него SSD.

Это значит, что, собирая массив RAID 0 с использованием встроенного контроллера чипсетов Intel восьмой серии, можно не беспокоиться относительно деградации производительности SSD при их переходе из свежего в использованное состояние. Кроме того, не теряется возможность наблюдения за физическим состоянием входящих в массив накопителей, что, на самом деле, имеет большое практическое значение. Как уже было сказано, одной из наиболее неприятных черт массива с чередованием является его более низкая, чем у одиночного SSD, надёжность: выход из строя одного из накопителей приводит к потере всего массива целиком. Современные же флеш-диски обладают обширными средствами самодиагностики: сообщаемый ими набор параметров S.M.A.R.T. позволяет с хорошей степенью достоверности следить за их жизненным циклом и здоровьем. Поэтому предоставляемая Intel RST возможность обращения к S.M.A.R.T. входящих в массив накопителей очень полезна как для предотвращения сбоев и потерь данных, так и для простого самоуспокоения.

RAID 5 на базе SSD Kingston и контроллеров Broadcom

Для организации RAID-массива пятого уровня нам потребуется как минимум три накопителя, данные на которых чередуются (циклически записываются на все накопители в массиве), но не дублируются. При их организации следует учитывать их более сложное устройство, так как здесь появляется такое понятие, как “контрольная сумма” (или же “четность”). Под этим понятием подразумевается логическая алгебраическая функция XOR (она же исключающее „ИЛИ“), которая и диктует использование минимум трех накопителей в массиве (максимум – 32). При этом информация о четности записывается на все «диски» в массиве.

Для массива из четырех SATA SSD-накопителей Kingston DC500R с емкостью по 3,84 Тбайт каждый, мы получим 11,52 Тбайт пространства и 3,84 для контрольных сумм. А если объединить в RAID пятого уровня 16 NVMe-накопителей Kingston DC1000M U.2 с емкостью 7,68 Тбайт — поучим 115,2 Тбайт с потерей 7,68 Тбайт. Как видите, чем больше накопителей, тем в итоге лучше. Лучше еще и потому, что чем больше накопителей в RAID 5, тем выше суммарная производительность при операциях записи. А линейное чтение будет достигать уровня RAID 0.

Группа дисков RAID 5 обеспечивает высокую пропускную способность (особенно для больших файлов) и избыточность с минимальной потерей мощности. Лучше всего такой тип организации массива подходит для сетей, которые выполняют много небольших операций ввода-вывода (I / O) одновременно. А вот использовать его для задач, требующих большого количества операций записи небольших или небольших блоков, не стоит. Есть и еще один нюанс: при отказе хотя бы одного из NVMe-накопителей, RAID 5 переходит в режим деградации и выход из строя еще одного устройства хранения может стать критичным для всех данных. В случае сбоя одного накопителя в массиве RAID-контроллер использует информацию о четности для воссоздания всех недостающих данных.

⇡#Выбираем SSD для RAID: Kingston HyperX 3K

Если учесть особенности массивов с чередованием, самым логичным выбором для них являются испытанные и стабильные SSD, от которых можно не ожидать никаких неприятных сюрпризов. К сожалению, таких вариантов не слишком много. Даже если за состоянием используемой флеш-памяти непрерывно следить через S.M.A.R.T., никто не застрахован от отказов SSD, происходящих по вине ошибок в контроллерах и прошивках. Поэтому мы рекомендуем выбирать для RAID-массивов модели твердотельных накопителей, представленные на рынке продолжительное время, за которое пользователи могли убедиться в их надёжности на практике, а производители имели возможность исправить все выявленные проблемы.

И, как это ни удивительно, здесь неплохим вариантом могут быть накопители, построенные на контроллерах семейства SandForce. Эти модели, вне всяких сомнений, опробованы многочисленной армией их владельцев, и все свойственные им детские болезни давно и успешно излечены как на программном, так и на аппаратном уровне. Более того, флеш-диски с контроллерами SF-2281 имеют и ещё два важных преимущества. Во-первых, набор параметров S.M.A.R.T. у таких моделей очень подробен и сильно превосходит S.M.A.R.T. других SSD, позволяя получать доскональную картину состояния флеш-памяти. Во-вторых, SandForce-накопители располагают мощным набором технологий (в частности, DuraWrite и RAISE), направленных на продление жизненного цикла флеш-памяти. Поэтому с точки зрения надёжности среди потребительских SSD их можно причислить к одним из лучших вариантов.

Не следует забывать и о ценовом аспекте. Твердотельные накопители на контроллерах SandForce на сегодняшний день дёшевы как никогда, что серьёзно повышает их привлекательность. Конечно, их производительность далека от лидирующего уровня, однако для RAID-массивов с чередованием быстродействующие SSD не столь необходимы. В таких конфигурациях за высокую производительность в первую очередь несёт ответственность SATA-контроллер набора системной логики и сами принципы функционирования RAID-массивов.

Выбирая же среди многочисленных поставщиков SSD на базе контроллера SF-2281, остановиться, очевидно, стоит на наиболее крупных и авторитетных. Кто-то наверняка предпочтёт твердотельные накопители Intel, но нам понравились флеш-приводы Kingston HyperX 3K, которые зачастую стоят немного дешевле. Именно с ними мы и проводили наши эксперименты.

Накопители серии Kingston HyperX 3K — это типичные решения на базе контроллеров SandForce второго поколения. С ними мы уже сталкивались более года назад, но с момента прошлого знакомства многое изменилось. А именно, 25-нм флеш-память производства консорциума IMFT, устанавливавшаяся в них ранее, отошла к категории раритетной, поэтому Kingston использует теперь совсем другую память — 19-нм MLC NAND c интерфейсом Toggle Mode компании Toshiba. Надо сказать, что замена флеш-памяти произошла без каких-либо анонсов, несмотря на то, что при этом несколько изменились и заявленные в спецификациях показатели производительности.

Но выглядят накопители Kingston HyperX 3K сегодня точно так же, как и полтора года назад:

Флеш-приводы этой серии сохранили свой привлекательный внешний вид и высокое качество сборки. Внутренности же обновлённых моделей Kingston HyperX 3K отличаются от применявшихся ранее плат как набором микросхем флеш-памяти, так и цветом.

Kingston HyperX 3K 240 Гбайт

Kingston HyperX 3K 480 Гбайт

Паспортные характеристики участвующих в тестах моделей Kingston HyperX 3K ёмкостью 240 и 480 Гбайт с флеш-памятью Toshiba приведены в следующей таблице:

ПроизводительKingston
СерияHyperX 3K
Модельный номерSH103S3/240GSH103S3/480G
Форм-фактор2,5 дюйма
ИнтерфейсSATA 6 Гбит/с
Ёмкость240 Гбайт480 Гбайт
Конфигурация
Микросхемы памяти: тип, интерфейс, техпроцесс, производительMLC, Toggle Mode DDR, 19 нм, Toshiba
Микросхемы памяти: число / количество NAND-устройств в чипе16/216/4
КонтроллерSandForce SF-2281
Буфер: тип, объемНетНет
Производительность
Макс. устойчивая скорость последовательного чтения555 Мбайт/с540 Мбайт/с
Макс. устойчивая скорость последовательной записи510 Мбайт/с450 Мбайт/с
Макс. скорость произвольного чтения (блоки по 4 Кбайт)86000 IOPS74000 IOPS
Макс. скорость произвольной записи (блоки по 4 Кбайт)73000 IOPS32000 IOPS
Физические характеристики
Потребляемая мощность: бездействие/чтение-запись0,455 Вт/2,11 Вт
Ударопрочность20 g
MTBF (среднее время наработки на отказ)1 млн час
TBW (суммарное число записываемых байтов)192 Тбайт384 Тбайт
AFR (annualized failure rate)НД
Габаритные размеры: ДхВхГ100х69,85х9,5 мм
МассаНД
Гарантийный срок3 года
Средняя розничная цена, руб.

Заметьте, модель Kingston HyperX 3K ёмкостью 480 Гбайт заметно медленнее 240-гигабайтной модификации. Контроллер SF-2281 демонстрирует наивысшую производительность при четырёхкратном чередовании устройств NAND в каждом канале, необходимое же для получения 480 Гбайт ёмкости восьмикратное чередование вносит некоторые задержки. Применение флеш-памяти с интерфейсом Toggle Mode только усугубило этот эффект. Если модель Kingston HyperX 3K на 240 Гбайт, исходя из спецификаций, стала немного быстрее предшественницы с памятью Intel, то 480-гигабайтная модификация в своём быстродействии потеряла.

RAID из SSD — находка или бессмыслица?

Оглавление

  • Вступление
  • Участники тестирования
  • Сводная таблица технических характеристик
  • Тестовый стенд и методика тестирования
  • Конфигурирование RAID
  • Тестирование в классических бенчмарках
  • Crystal Disk Mark
  • PCMark 7
  • Intel NAS Performance Toolkit
  • FC-test
  • Тестирование в прикладных программах
    • Практические сценарии
    • Скорость установки программ
    • Скорость загрузки программ
  • Исследование Lineage II и журнала Fraps frametimes
  • Заключение
  • Вступление

    Все знают, что SSD это здорово. Многие также считают, что RAID массивы – залог высокого быстродействия. А хотели ли вы собрать RAID из SSD? Или может быть прикидывали, что выгоднее: приобрести один большой диск, либо наладить совместную работу нескольких маленьких?
    Данный материал должен помочь определиться с выбором.

    Участники тестирования

    Новых накопителей в этот раз не будет. Все они уже участвовали в более ранних статьях. Разница лишь в их количестве.

    OCZ Vertex 3 Max IOPS, 128 Гбайт

    анонсы и реклама

    2080 Super Gigabyte Gaming OC за 60 т.р.

    Compeo.ru — правильный компмагазин без подвохов

    RTX 2060 дешевеет перед приходом 3ххх

    Ryzen 4000

    серии в составе компьютеров уже в Ситилинке

    РУХНУЛА цена MSI RTX 2070 после анонса RTX 3ххх

    Core i9 10 серии вдвое дешевле такого же 9 серии

    Цена на память снижена в 2 раза в Регарде — везде дороже

    Одиночный Vertex 3 Max IOPS был протестирован в обзоре Vertex 4. Здесь он выступает в роли «среднего среди лучших» в весовой категории 128 Гбайт.

    Прошивка перед тестированием в массивах была обновлена до версии 2.22. Кстати, CrystalDiskInfo 5.0 научился видеть параметры дисков внутри RAID.

    Crucial M4, 64 Гбайта

    Данный SSD участвовал в статье о накопителях Plextor и проявил себя как весьма шустрый для такого объема накопитель. Основная задача – проверить, как массив из маленьких дисков справится с одним большим.

    Использовалась последняя доступная прошивка, а именно 000F.

    WD Caviar Blue, 500 Гбайт

    Этот уже в полном смысле слова ветеран был протестирован в обзоре кэширующих SSD, а знакомство с линейкой AAKX состоялось еще в 2010м году. Несмотря на то, что Western Digital уже вовсю осваивает терабайтные «блины», этот жесткий диск еще не снят с производства. Возраст же работающих у людей «винчестеров» достигает десятка лет, многие не меняют их до момента поломки, так что можно утверждать, что модель двухлетней давности будет быстрее среднестатистического диска. Если это ваш случай, можете прикинуть, насколько SSD будут быстрее.

    Значения S.M.A.R.T. с момента прошлого знакомства «подросли», тем не менее, накопитель в хорошем состоянии.

    Сводная таблица технических характеристик

    МодельOCZ Vertex 3 Max IOPSCrucial M4WD Caviar Blue
    Номер моделиVTX3MI-25SAT3-120GCT064M4SSD2WD5000AAKX-001CA0
    Объем, Гбайт12064500
    Форм-фактор2.5”2.5”3.5”
    ИнтерфейсSATA-IIISATA-IIISATA-III
    Версия прошивки2.15030915.01H15
    УстройствоКонтроллер SandForce SF-2281 + Toshiba 34 нм синхр. Toggle Mode FLASHКонтроллер Marvell 88SS9174 + Micron 25 нм синхр. ONFI FLASH1 пластина 500 Гбайт, 7200 об/мин + 2 головки
    Кэш, МбайтНет12816

    Тестовый стенд и методика тестирования

    Тестовый стенд:

    • Материнская плата: ASRock Z68 Extreme7 Gen3 (BIOS 1.30);
    • Процессор: Intel Core i7-2600K, 4.8 ГГц (100 х 48);
    • Система охлаждения: GELID Tranquillo Rev.2;
    • Оперативная память: G.SKILL Ripjaws Z, F3-17000CL9Q-16GBZH (1866 МГц, 8-10-9-26 1N) 2×4 Гбайта;
    • Жесткий диск: WD Caviar Blue, WD3200AAKX-001CA0, 320 Гбайт;
    • Видеокарта: ASUS GTX 580 DirectCu II, 1.5 Гбайт GDDR5;
    • Блок питания: Hipro HP-D6301AW, 630 Вт.

    Запись процесса загрузки системы и внутриигровых видео осуществлялась через HDMI с помощью ТВ-тюнера AVerMedia AVerTV CaptureHD на другом ПК.

    Системное ПО:

    • Операционная система: Windows 7 x64 SP1 Ultimate RUS;
    • Обновления операционной системы: все на 08.03.2012, включая Direct X;
    • Драйвер для видеокарты: NVIDIA GeForce 295.73;
    • Драйвер для SATA контроллера: Intel RST 11.1, контроллер работает в режиме RAID.

    Методика тестирования

    Глобальные настройки:

    • В ОС не установлен никакой антивирус, способный влиять на результаты замеров, Windows Defender отключен.
    • По той же причине отключены служба индексирования файлов, служба обновлений и плановая дефрагментация.
    • Отключен Windows UAC, который делал невозможным работу некоторых тестовых программ.
    • Отключены System Restore и гибернация – экономия места на диске.
    • Отключен Superfetch.
    • Файл подкачки – 1 Гбайт.
    • Профиль электропитания – высокая производительность. Отключать диски – никогда.
    • В момент снятия замеров не используются программы фонового мониторинга типа Crystal Disk info, HWMonitor, счетчиков perfmon и прочих.
    • Кэш записи дисков включен, если не указано иное (в диспетчере устройств в свойствах диска на вкладке «политика» поставлена галка «разрешить кэширование записей для этого устройства»). «Повышенная производительность» не активирована. Включен TRIM (DisableDeleteNotify=0). Обычно диск по умолчанию настроен так, но все же нужно удостовериться.
    • Все накопители подключались к порту SATA-III, если не указано иное.

    Набор тестовых приложений следующий:

    • Crystal Disk Mark 3.0 x64.
      Завоевавший популярность тест, который позволяет измерить скорость диска в восьми режимах: чтение и запись при последовательном доступе, в случайном режиме крупными блоками по 512 Кбайт, мелкими блоками по 4 Кбайта и те же 4-Кбайтные запросы при длине очереди к диску в 32 запроса (проверка эффективности работы NCQ и механизмов распараллеливания нагрузки). Использовались настройки по умолчанию, а именно пятикратный прогон несжимаемых данных на участке 1000 Мбайт.
    • PCMark 7 x64.
      Последняя версия тестового пакета Futuremark.
    • Intel NAS Performance Toolkit 1.7.1.
      NASPT – очень мощный тест, сопоставимый по функционалу с IOMeter и разработанный прежде всего для тестирования сетевых накопителей. Вполне пригоден и для тестирования локальных дисков.
    • FC-test 1.0 build 11.
      Программа работала над двумя NTFS разделами, представляющими собой все доступное для форматирования пространство, разделенное пополам. Перед началом каждого замера компьютер перезагружался, весь процесс полностью автоматизирован.

      В качестве тестовых наборов использовались шаблоны Install (414 файлов общим объемом 575 Мбайт), ISO (3 файла общим объемом 1600 Мбайт) и Programs (8504 файла общим объемом 1380 Мбайт). Для каждого набора измерялась скорость записи всего набора файлов на диск (тест Сreate), скорость чтения этих файлов с диска (Read), скорость копирования файлов внутри одного логического диска (Copy near) и скорость копирования на второй логический диск (Copy far). Агрессивное кэширование записи Windows искажает результаты в тесте Create, а два способа копирования на SSD ничем не отличаются, поэтому ограничусь обнародованием двух оставшихся результатов для каждого шаблона.

    • WinRAR 4.11 x64.
      В этом и всех последующих тестах накопители были системными: эталонный образ Windows, включающий все необходимые программы и дистрибутивы, заливался с помощью Acronis True Image 12. Тестовым файлом служила заархивированная папка Windows 7. 83 000 файлов суммарным объемом 15 Гбайт были сжаты стандартным способом до 5.6 Гбайт. Измерение показало, что на скорость запаковки диски влияют минимально, поэтому для экономии времени тестировалась только распаковка в соседнюю папку.
    • Microsoft Office 2010 Pro Plus.
      Измерялось время инсталляции из дистрибутива, представляющего собой ISO копию оригинального DVD, смонтированной в Daemon Tools.
    • Photoshop CS5.
      Всеми любимый графический редактор инсталлировался из ISO образа, подключенного с помощью Daemon Tools. Устанавливались обе версии (x32 и x64) с английским интерфейсом и замерялось время установки. В качестве бенчмарка использовалась схема с этого специализированного форума, а именно — данный скрипт, создающий изображение 18661×18661 пикселей и выполняющий с ним несколько действий. Замерялось общее время выполнения без пауз между операциями. По-хорошему, для подобных вещей нужен громадный объем оперативной памяти, так что тест накопителей, по сути, сводится к проверке скорости работы с scratch-файлом и файлом подкачки Windows. Photoshop’у было дозволено занимать 90% памяти, остальные настройки оставались по умолчанию.
    • Загрузка Windows 7.
      Измерялись три отрезка времени: интервал с момента нажатия кнопки power до появления логотипа Windows, время до появления рабочего стола Windows и время до окончания загрузки приложений: в автозагрузке были расположены Word 2010, Excel 2010, Acrobat Reader X и Photoshop CS5, открывающие соответствующие файлы. Помимо этого, в фоновом режиме стартовали Daemon tools и Intel RST. Окончанием загрузки считалось появление фотографии в Photoshop, остальные приложения запускались раньше.
    • Запуск программ.
      В уже загрузившейся ОС запускался bat файл, запускающий одновременно вышеупомянутые Word, Excel, Acrobat Reader и Photoshop с их документами, а также WinRAR, открывающий тестовый архив с Windows. Самая долгая операция – чтение файлов в архиве и подсчет их количества.
    • Crysis Warhead.
      Популярный в прошлом шутер использовался для проверки скорости инсталляции и загрузки (с момента покидания рабочего стола до начала 3D сцены). Ранее выяснилось, что дискозависимость у этой игры одна из самых сильных, поэтому в качестве бенчмарка для накопителей она отлично подходит. Установка производилась из оригинального DVD, распакованного на системный диск в виде набора папок. Запуск осуществлялся через утилиту Crysis Benchmark Tool 1.05 со следующими настройками: — Quality Settings: Very High; — Display resolution: 1280 x 1024; — Global settings: 64 bit, DirectX 10; — AntiAliasing: no AA; — Loops: 1; — Map: ambush flythrough; — Time of Day: 9.
    • World of Tanks.
      Известная MMORPG. Игры подобного рода сильно зависят от скорости сети, поэтому все замеры проводились в будни утром на сервере WOT RU2, когда на нем находились 30-35 тысяч человек. Интернет канал 100 Мбит, пинг в игре 20-30 мс. Загружалась карта Химмельсдорф, позиция 1, тренировочный бой 4-8 человек, танк МС-1. Разрешение 1280 x 1024, сглаживание отключено, качество графики очень высоко.
    • Lineage II.
      Другая известная и очень дискозависимая MMORPG. Использовалась русская официальная версия Goddess of Destruction: Chapter 1 Awakening и два данных реплея. Методика их воспроизведения взята с форума 4game.ru. Замерялось время установки дистрибутива, а также был проведен анализ журнала Fraps frametimes на основе этой методики. Все настройки, кроме разрешения экрана, сделаны в соответствии с рекомендацией: — Разрешение: 1280 x 1024, 32bit, 60 Гц, полноэкранный режим; — Текстуры, Детализация, Анимация, Эффекты: Низ.; — Местность, Персонажи: Очень широко; — Лимит PC/NPS: Макс; — Погода, Сглаживание, Отражения, Графика, Тени, Детализация земли, Улучшенные эффекты: нет.

    ⇡#Создание массива RAID 0 на базе Intel RST

    Компания Intel проделала большую работу с тем, чтобы сделать создание RAID-массивов в платформах на базе её процессоров простой и прозрачной процедурой. На сегодняшний день драйвер Intel RST полностью ограждает пользователей от необходимости общения с BIOS RAID-контроллера и единственное, что необходимо сделать, чтобы получить возможность объединения SSD в массивы, — это переключить интегрированный в набор системной логики SATA-контроллер в RAID-режим через BIOS материнской платы.

    Правда, здесь может возникнуть неприятность с операционной системой, которая после смены режима SATA-контроллера откажется загружаться и будет вываливаться в «синий экран». Причина состоит в том, что если при установке операционной системы RAID-контроллер не был включён, то необходимый драйвер деактивируется в ядре OC. Но в Windows 8 и 8.1 Microsoft предусмотрела достаточно простую процедуру решения проблемы без необходимости новой переустановки операционной системы, выполняемую через «безопасный режим». До смены режима SATA-контроллера (если система уже не стартует, но настройки SATA-контроллера в BIOS следует вернуть к первоначальным) необходимо открыть командную строку с правами администратора и выполнить команду bcdedit /set {current} safeboot minimal. Это запрограммирует старт OC в безопасном режиме, и при следующей перезагрузке можно будет беспрепятственно изменить режим SATA-контроллера в BIOS. Когда после активации RAID система загрузится в безопасном режиме, тип загрузки следует вернуть к обычному варианту, для чего в командной строке нужно выполнить команду bcdedit /deletevalue {current} safeboot. Больше встречи с «синим экраном» при старте возникать не должно.

    Обладателям же Windows 7 перед сменой режима контроллера придётся повозиться серьёзнее, в этом случае без правки реестра не обойтись. Подробная информация по решению этой проблемы имеется на сайте Microsoft.

    После включения режима RAID и внедрения в систему необходимых драйверов можно переходить непосредственно к формированию массива. Он создаётся средствами драйвера Intel RST.

    В процессе создания массива в первую очередь требуется указать его тип. В нашем случае это RAID 0.

    Второй шаг: нужно выбрать те накопители, которые необходимо включить в массив.

    При желании также можно изменить и размер блоков, на которые разбивается записываемая информация для её распределения по SSD в режиме чередования. Впрочем, предлагаемое по умолчанию значение 16 Кбайт вполне подходит для массивов RAID 0 из обладающих очень низким временем доступа твердотельных накопителей, так что менять в общем случае нет никакого смысла.

    И всё — массив готов.

    Обратите внимание, несмотря на то, что два твердотельных накопителя Kingston HyperX 3K объединены в RAID 0, с их S.M.A.R.T.-диагностикой нет никаких проблем.

    HDD RAID против одного SSD

    Мы полагаем, что наиболее распространенная причина, по которой кто-то может задаться вопросом о RAID и его связи с твердотельными накопителями, вытекает из этого конкретного сравнения. Так что сначала мы уберем это с дороги.

    Механические жесткие диски работают довольно медленно, поэтому один из популярных способов повысить производительность — объединить два идентичных диска в конфигурацию RAID 0. Данные «чередуются» на обоих дисках, и они действуют как один жесткий диск, но с (теоретически) удвоенной скоростью передачи. Поскольку каждый диск имеет уникальную часть ваших данных, вы всегда можете иметь оба диска, участвующих в любой операции.

    К сожалению, когда дело доходит до чистой скорости, один SSD всегда выигрывает у установки жесткого диска RAID 0. Даже самый быстрый и самый дорогой потребительский жесткий диск SATA III со скоростью вращения 10 000 об/мин только достигает 200 МБ / с. В теории . Таким образом, два из них в RAID0 обойдутся чуть меньше, чем в два раза.

    Почти любой SATA III SSD будет очень близко к пределу соединения на скорости 600 МБ / с. Если мы говорим о SSM-накопителях NVME, использующих протокол PCIe, то типичная скорость чтения превышает 2000 МБ / с.

    Другими словами, если вам нужна чистая производительность, один SSD всегда будет лучше пары механических приводов. Даже если они самые быстрые механические приводы в мире.

    То же самое касается надежности и защиты данных. Если у вас есть установка RAID 10 с четырьмя жесткими дисками, вы все равно получаете удвоенную скорость диска, и вы можете потерять диск, не потеряв никаких данных. Несмотря на это, один SSD по-прежнему будет более надежным решением. SSD имеет ограниченное количество записей, прежде чем они больше не смогут перезаписывать существующие данные, но вы все равно можете прочитать все данные на диске.

    Самопроизвольный выход из строя SSD невероятно редок, но у вас всегда есть возможность запустить два SSD в RAID 1. Нет существенного выигрыша в скорости, но один диск может полностью выйти из строя без потери данных. Мы не рекомендуем тратить деньги на установку RAID 1 SSD исключительно для безопасности данных. Гораздо более выгодно просто создать резервную копию образа жесткого диска на доступном внешнем диске или в облаке, поскольку большинство настольных систем не являются критически важными.

    ⇡#Методика тестирования

    Тестирование проводится в операционной системе Windows 8.1, корректно распознающей и обслуживающей современные твердотельные накопители. Это значит, что в процессе прохождения тестов, как и при обычном повседневном использовании SSD, команда TRIM поддерживается и активно задействуется. Измерение производительности выполняется с накопителями, находящимися в «использованном» состоянии, которое достигается их предварительным заполнением данными. Перед каждым тестом накопители очищаются и обслуживаются с помощью команды TRIM. Между отдельными тестами выдерживается 15-минутная пауза, отведённая для корректной отработки технологии сборки мусора. Во всех тестах, если не указано иное, используются рандомизированные несжимаемые данные.

    Используемые приложения и тесты:

    • Iometer 1.1.0 RC1
    1. Измерение скорости последовательного чтения и записи данных блоками по 256 Кбайт (наиболее типичный размер блока при последовательных операциях в десктопных задачах). Оценка скорости выполняется в течение минуты, после чего вычисляется средний показатель.
    2. Измерение скорости случайного чтения и записи блоками размером 4 Кбайт (такой размер блока используется в подавляющем большинстве реальных операций). Тест проводится дважды — без очереди запросов и с очередью запросов глубиной 4 команды (типичной для десктопных приложений, активно работающих с разветвлённой файловой системой). Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скорости выполняется в течение трёх минут, после чего вычисляется средний показатель.
    3. Установление зависимости скоростей случайного чтения и записи при работе накопителя с 4-килобайтными блоками от глубины очереди запросов (в пределах от одной до 32 команд). Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скорости выполняется в течение трёх минут, после чего вычисляется средний показатель.
    4. Установление зависимости скоростей случайного чтения и записи при работе накопителя с блоками разного размера. Используются блоки объёмом от 512 байт до 256 Кбайт. Глубина очереди запросов в течение теста составляет 4 команды. Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скорости выполняется в течение трёх минут, после чего вычисляется средний показатель.
    5. Измерение производительности при смешанной многопоточной нагрузке. На накопитель посылаются разноплановые команды, включающие как чтение, так и запись с различными размерами блоков. Процентное соотношение между разнородными запросами приближено к реальной десктопной нагрузке (75 % — операции чтения, 25 % — запись; 75 % — случайные запросы, 25 % — последовательные; 55 % — блоки размером 4 Кбайт, 25 % — 64 Кбайт и 20 % — 128 Кбайт). Тестовые запросы генерируются четырьмя параллельными потоками. Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скорости производится в течение трёх минут, после чего вычисляется средний показатель.
    • CrystalDiskMark 3.0.3

    Синтетический тест, выдающий типовые показатели производительности твердотельных накопителей, измеренные на 1-гигабайтной области диска «поверх» файловой системы. Из всего набора параметров, которые можно оценить с помощью этой утилиты, мы обращаем внимание на скорость последовательного чтения и записи, а также на производительность произвольных чтения и записи 4-килобайтными блоками без очереди запросов и с очередью глубиной 32 команды.

    • PCMark 8 2.0

    Тест, основанный на эмулировании реальной дисковой нагрузки, которая характерна для различных популярных приложений. На тестируемом накопителе создаётся единственный раздел в файловой системе NTFS на весь доступный объем, и в PCMark 8 проводится тест Secondary Storage. В качестве результатов теста учитывается как итоговая производительность, так и скорость выполнения отдельных тестовых трасс, сформированных различными приложениями.

    Особенности SSD-кэширования в RAIDIX

    В RAIDIX реализован параллельный SSD-кэш, который имеет две уникальные особенности: разделение входящих запросов на категории RRC (Random Read Cache) и RWC (Random Write Cache) и использование Log-структурированной записи для собственных алгоритмов вытеснения.

    Категории RRC и RWC

    Пространство кэша разделено на две функциональные категории: для случайных запросов на чтение — RRC, для случайных запросов на запись — RWC. Для каждой из этих категорий есть свои правила попадания и вытеснения.

    За попадание отвечает специальный детектор, который квалифицирует поступающие запросы.

    Рисунок 4. Схема работы SSD-кэша в RAIDIX

    Попадание в RRC

    В область RRC попадают только случайные запросы с частотой обращения больше 2-х (ghost-очередь).

    Попадание в RWC

    В область RWC попадают все случайные запросы на запись, у которых размер блока меньше устанавливаемого параметра (по умолчанию 32KB).

    Особенности Log-структурированной записи

    Log-структурированная запись — это способ последовательной записи блоков данных без учета их логической адресации (LBA, Logical Block Addressing).

    Рисунок 5. Визуализация принципа Log-структурированной записи

    В RAIDIX Log-структурированная запись используется для заполнения выделенных областей (с установленным размером в 1 ГБ) внутри RRC и RWC. Эти области применяются для дополнительного ранжирования при перезаписи пространства кэша.

    Вытеснение из буфера RRC

    Выбирается самая холодная область RRC, и в нее перезаписываются новые данные из ghost-очереди (данные с частотой обращений больше 2-х).

    Вытеснения из буфера RWC

    Область выбирается по принципу FIFO, а затем из нее последовательно, в соответствии с LBA (Logical Block Address), вытесняются блоки данных.

    ⇡#Тестовый стенд

    В качестве тестовой платформы используется компьютер с материнской платой Gigabyte GA-Z87X-UD3H, процессором Core i3-4340 и 4 Гбайт RAM DDR3-1600 МГц. Диски подключаются к контроллеру SATA 6 Гбит/с, встроенному в чипсет материнской платы, и работают в режиме AHCI или RAID. Используется драйвер Intel Rapid Storage Technology (RST) 12.9.0.1001 и операционная система Windows 8.1 Enterprise x64.

    Объем и скорость передачи данных в бенчмарках указываются в бинарных единицах (1 Кбайт = 1024 байт).

    В погоне за рекордами скорости

    Настраиваем RAID-массив Для получения возможности загрузки с RAID-массива требуется настроить его на аппаратном уровне в UEFI
    Быстрее, чем NVMe SSD, работает массив RAID 0 из двух накопителей, когда система записывает и считывает информацию одновременно с двух дисков. Если возьметесь за конфигурацию аппаратных RAID-массивов в BIOS/UEFI и пройдете через установку Windows, то на двух доступных накопителях SATA можете получить такую же скорость передачи данных, как на накопителе NVMe начального уровня. Мы же хотим объединить таким образом два высокоскоростных накопителя NVMe и побить рекорды скорости.

    Создание RAID-массива

    Для Windows должны быть установлены драйверы Intel для RAID и фирменное ПО Intel Rapid Storage
    Первый барьер в погоне за RAID-мас­сивом из накопителей NVMe — аппаратное обеспечение. На материнской плате должны быть два слота NVMe, а также возможность объединить их при помощи функции RAID чипсета Intel. К тому же система после этой процедуры должна еще и загрузиться. В принципе, справиться с этой задачей могут топовые материнские платы с чипсетами Intel Z170 и новейшим Z270 (для процессоров Kaby Lake).

    На материнскую плату Gigabyte Z270X Gaming 7 мы установили два твердотельных накопителя Samsung 960 Pro. Затем нам нужно было настроить аппаратный RAID в UEFI. В ранней версии прошивки материнской платы попутно пришлось выполнить еще и небольшую задачу: нужно было сначала активировать режим RAID контроллера SATA, и только потом в пункте меню «Peripheral | EZ Raid» мы смогли объединить оба диска NVMe в массив RAID 0, который получил в два раза больше емкости, чем один накопитель.

    RAID-массив был готов за несколько кликов. Для установки Windows 10 мы скопировали программу Intel Rapid Sto­rage с прилагающегося к материнской плате диска на USB-флешку. Когда во время установки нужно было выбрать системный диск, мы загрузили драйвер, нажав соответствующую кнопку, после чего массив, связанный с контроллером Intel, определился как диск назначения.

    Во время запущенного нами процесса установки UEFI система автоматически загружается из RAID-массива, который используется даже в текущем режиме работы как самый обычный накопитель. Но из-за того, что теперь операционная система обменивается данными только с контроллером Intel для RAID, а не напрямую с накопителями, мы не смогли задействовать драйвер Samsung для NVMe, благодаря которому потенциал 960 Pro мог бы полностью проявить себя, и это немного отразилось на скорости.

    RAID 0: преимущества и бенчмарки

    На правильных настройках UEFI наша тестовая система загружается менее чем за десять секунд. Полная установка LibreOffice вместе с записью 7000 файлов заняла 21 секунду. Бенчмарки (см. вверху) отражают в цифрах быстродействие RAID-массива, а также его предел. Предел — потому что вместо теоретического увеличения скорости на 100% по сравнению с отдельным диском мы получили только 20% прироста в скорости чтения и 32% — при записи.

    Большей скорости мы смогли достичь, применив довольно бесполезный на практике метод: при помощи адаптера подключили второй твердотельный накопитель в слот PCIe для видеокарт, затем загрузились с третьего твердотельного накопителя SATA и объединили оба носителя NVMe с драйверами Samsung в Windows в один программный

    Адаптер M.2/PCIe При необходимости твердотельный накопитель форм-фактора M.2 можно подключить в слот PCIe x4 через переходник
    RAID-массив. Такой массив (он, впрочем, не подходит для использования в качестве диска для загрузки системы) обогнал отдельно взятый накопитель на 43% по чтению и целых 82% по записи.

    Результаты простого, но довольно быстрого тестирования ATTO Disk Bench­mark показали, что скорость даже такой комбинации не превысит 4 Гбайт/с. Это максимальная пропускная способность шины DMI, соединяющей процессор и чипсет. Intel должна принимать срочные решения по изменению структуры платформы, чтобы она могла поддерживать огромные скорости передачи данных NVMe-совместимых накопителей.

    ⇡#Последовательные операции чтения и записи, IOMeter

    Последовательные дисковые операции — это именно та среда, где лучше всего видно масштабируемость производительности RAID-массивов. Массив с чередованием оказывается значительно быстрее одиночных Kingston HyperX 3K объёмом 240 и 480 Гбайт как при последовательном чтении, так и при записи.

    Массив RAID 1 из 2 жестких дисков

    Массив RAID 1 — один из самых распространенных и бюджетных вариантов, который использует 2 жестких диска. Это минимальное количество дисков HDD или SSD, которое можно использовать. Массив RAID 1 призван обеспечить максимальную защиту данных пользователя, потому что все файлы будут одновременно копироваться сразу на 2 жестких диска. Для того, чтобы его создать, берем два одинаковых по объему харда, например по 500 Гб и делаем соответствующие настройки в BIOS для создания массива. После этого в вашей системе будет виден один жесткий диск размеров не 1 Тб, а 500 Гб, хотя физически работают два жестких диска — формула расчета приведена чуть ниже. И все файлы одновременно будут писаться на два диска, то есть второй будет полной резервной копией первого. Как вы понимаете, при выходе из строя одного из дисков вы не потеряете ни частички своей информации, так как у вас будет вторая копия этого диска.

    Также поломки и не заметит операционная система, которая продолжит работу со вторым диском — о неполадке вас известит лишь специальная программа, которая контролирует функционирование массива. Вам нужно лишь удалить неисправный диск и подключить такой же, только рабочий — система автоматически скопирует на него все данные с оставшегося исправного диска и продолжит работу.

    Объем диска, который будет видеть система, рассчитывается здесь по формуле:

    V = 1 x Vmin, где V — это общий объем, а Vmin — объем памяти самого маленького жесткого диска.

    ⇡#Случайные операции чтения и записи, IOMeter

    А вот при случайном чтении такого же впечатляющего прироста в скорости, как в случае последовательных операций, не видно. Из приведённых на диаграммах результатов можно сделать вывод о том, что массив RAID 0 эффективен лишь тогда, когда из случайных операций формируется очередь.

    Начать тут следует с того, что при измерении скорости случайной записи крайне невысокие результаты показывает Kingston HyperX 3K ёмкостью 480 Гбайт. Эта странная особенность этого накопителя обуславливается неприспособленностью старого контроллера SandForce второго поколения к созданию SSD большого объёма. Именно поэтому массивы RAID 0 из SSD небольшого объёма могут иметь значительно более высокую скорость, нежели одиночные флеш-диски аналогичной ёмкости. Между тем по сравнению с одиночным Kingston HyperX 3K 240 Гбайт массив, составленный из таких флеш-дисков, отнюдь не быстрее. Впрочем, особо расстраиваться по этому поводу не стоит: такая ситуация наблюдается исключительно при случайной записи.

    Давайте теперь взглянем на то, как зависит производительность RAID 0 при работе с 4-килобайтными блоками от глубины очереди запросов.

    Приведённые графики служат ещё одной иллюстрацией к сказанному выше. Если при чтении RAID 0 демонстрирует более высокую скорость, чем одиночные твердотельные накопители, причём преимущество с ростом глубины очереди возрастает, то при операциях записи RAID 0 из Kingston HyperX 3K 240 Гбайт опережает лишь Kingston HyperX 3K 480 Гбайт. Один же Kingston HyperX 3K 240 Гбайт оказывается лучше массива.

    Следующая пара графиков отражает зависимость производительности случайных операций от размера блока данных.

    На самом деле, как оказывается, RAID 0-массив проигрывает по скорости записи одиночным накопителям, в него входящим, лишь в том случае, когда операции происходят 4-килобайтными блоками. Это и не удивительно. Как следует из графика, Kingston HyperX 3K 240 Гбайт оптимизирован под запросы размером 4 Кбайт, но RAID-контроллер в соответствии с выбранным нами размером страйп-блока преобразует их в 16-килобайтные запросы. К сожалению, использовать в массиве чередование 4-Кбайт блоков — далеко не самая выигрышная стратегия. В этом случае серьёзно возрастает создаваемая RAID-контроллером нагрузка на центральный процессор, и никакого реального прироста в скорости может и не оказаться.

    В завершение рассмотрения результатов IOmeter предлагаем взглянуть на производительность накопителей при синтетическом моделировании тяжёлой смешанной дисковой активности, в котором одновременно и в несколько потоков воспроизводятся разные типы операций.

    Массив RAID 0 из пары Kingston HyperX 3K 240 Гбайт показывает чуть более высокую скорость, нежели простой накопитель Kingston HyperX 3K 240 Гбайт. Однако Kingston HyperX 3K 480 Гбайт к смешанной нагрузке приспособлен ещё лучше — его результат выше. Впрочем, различие между тестируемыми конфигурациями в этом бенчмарке не носит принципиального характера.

    RAID 10 на базе SSD Kingston и контроллеров Broadcom

    Итак, RAID 0 предоставляет нам двукратный прирост скорости и времени доступа, а RAID 1 обеспечивает надежность. В идеале бы их совместить, и тут на помощь приходит RAID 10 (или же 1+0). “Десятка” собирается из четырех SATA SSD- или NVMe-накопителей (максимум – 32) и подразумевает массив из “зеркал”, количество накопителей в котором всегда должно быть кратно четырем. Данные в этом массиве записываются посредством разбиения на фиксированные блоки (как в случае с RAID 0) и чередования между накопителями, распределяя копии между «дисками» в массиве RAID 1. А благодаря возможности одновременного доступа к нескольким группам дисков, RAID 10 показывает высокую производительность.

    Так как RAID 10 способен распределять данные по нескольким зеркальным парам, это означает, что он может допускать сбой одного накопителя в паре. Однако в случае сбоя обеих зеркальных пар (то есть всех четырех накопителей) произойдет неизбежная потеря данных. В итоге мы также получаем хорошую отказоустойчивость и надежность. Но стоит иметь в виду, что, как и RAID 1, массив десятого уровня использует только половину суммарной емкости, а потому является дорогостоящим решением. Да еще и сложным в настройке.

    RAID 10 подходит для использования с хранилищами данных, которым требуется 100-процентная избыточность групп зеркальных дисков, а также повышенная производительность ввода-вывода RAID 0. Это лучшее решение для баз данных среднего размера или любой среды, которая требует более высокой отказоустойчивости, чем в RAID 5.

    ⇡#Результаты в CrystalDiskMark

    CrystalDiskMark — это популярное простое тестовое приложение, работающее «поверх» файловой системы, которое позволяет получать результаты, легко повторяемые обычными пользователями. И то, что выдаёт этот бенчмарк, несколько отличается от показателей, которые были получены нами в тяжёлом и многофункциональном пакете IOmeter, хотя с качественной точки зрения никаких кардинальных различий нет. Производительность RAID-массива с чередованием отлично масштабируется с точки зрения последовательных операций. Нет никаких претензий и к работе RAID 0 из Kingston HyperX 3K 240 Гбайт при случайном чтении. В этом случае прирост скорости по сравнению с одиночными SSD зависит от глубины очереди запросов, и, когда её длина достигает большой величины, RAID 0 способен выдавать существенно более высокую скорость. При произвольной же записи картина несколько иная. RAID 0 проигрывает одному Kingston HyperX 3K 240 Гбайт в тех случаях, когда операции не буферизируются, но увеличение глубины очереди запросов ожидаемо возвращает преимущество двухдисковой конфигурации.

    Кроме того, CrystalDiskMark вновь обнажает проблемы с производительностью ёмкой модели Kingston HyperX 3K 480 Гбайт на операциях случайной записи, ещё раз подчёркивая преимущества RAID 0 в случае необходимости создания дисковых конфигураций значительного объёма.

    Возможности SSD-кэширования в RAIDIX

    Параллельная архитектура SSD-кэша в RAIDIX позволяет ему быть не просто буфером для накопления случайных запросов — он начинает выполнять роль «умного распределителя» нагрузки на дисковую подсистему. Благодаря сортировке запросов и особым алгоритмам вытеснения, сглаживание пиков случайной нагрузки происходит быстрее и с меньшим влиянием на общую производительность системы.

    Алгоритмы вытеснения используют log-структурированную запись для более эффективного замещения данных в кэше. Благодаря этому снижается количество обращений к flash-накопителям и существенно сокращается их износ.

    Сокращение износа SSD-накопителей

    Благодаря детектору нагрузки и алгоритмам перезаписи суммарное количество write hits на массив SSD накопителей в RAIDIX составляет 1.8. В аналогичных условиях работа кэша второго уровня с алгоритмом LRU имеет значение 10.8. Это означает, что количество требуемых перезаписей на флеш-накопители в реализованном подходе будет в 6 раз меньше, чем во многих традиционных СХД. Соответственно, SSD-кэш в RAIDIX будет использовать ресурс твердотельных накопителей значительно эффективнее, увеличивая срок их жизни примерно в 6 раз.

    Эффективность SSD-кэширования на различных нагрузках

    Смешанную нагрузку можно рассматривать как хронологический перечень состояний с последовательным или случайным типом запроса. Системе хранения данных приходится справляться с каждым из этих состояний, даже если оно не является для нее предпочтительным и удобным.

    Мы провели тестирование SSD-кэша, эмулируя различные рабочие ситуации с разными типами нагрузок. Сравнив полученные результаты со значениями системы без SSD-кэша, можно наглядно оценить прирост производительности при разных типах запросов.

    Конфигурация системы: SSD кэш: RAID 10, 4 SAS SSD, объем 372 GB Основное хранилище: RAID 6i, 13 HDD, объем 3072 GB

    Тип паттернаТип запросаЗначение с SSD-кэшированиемЗначение без SSD-кэшированияУвеличение производительности
    Случайное чтение (100% попадание в кэш)random read 100%85.5K IOps2.5K IOpsВ 34 раза
    Случайная запись (100% попадание в кэш)random write 100%23K IOps500 IOpsВ 46 раз
    Случайное чтение (80% попадание в кэш, 20% попадание на HDD)random read 100%16.5K IOps2.5K IOpsВ 6.5 раз
    Случайное чтение из кэша, запись на HDDrandom read 50%40K IOps180 IOpsВ 222 раза
    sequential write 50%870 Mbps411 MbpsВ 2 раза
    Случайное чтение и запись (100% попадание в кэш)random read 50%30K IOps224 IOpsВ 133 раза
    random write 50%19K IOps800 IOpsВ 23 раза
    Последовательные запросы с большим блоком, случайная нагрузка 100% попадает в SSD-кэшrandom read 25%2438 IOps56 IOpsВ 43 раза
    random write 25%1918 IOps82 IOpsВ 24 раза
    sequential read 25%668 Mbps120 MbpsВ 5.5 раз
    sequential write 25%382 Mbps76.7 MbpsВ 5 раз

    У каждой реальной ситуации будет свой неповторимый «рисунок» нагрузки, и такое фрагментарное представление не дает однозначного ответа об эффективности SSD-кэширования на практике. Но оно помогает сориентироваться в том, где данная технология может быть наиболее полезна.

    ⇡#PCMark 8 2.0, реальные сценарии использования

    Тестовый пакет Futuremark PCMark 8 2.0 интересен тем, что он имеет не синтетическую природу, а напротив — основывается на том, как работают реальные приложения. В процессе его прохождения воспроизводятся настоящие сценарии-трассы задействования диска в распространённых десктопных задачах и замеряется скорость их выполнения. Текущая версия этого теста моделирует нагрузку, которая взята из реальных игровых приложений Battlefield 3 и World of Warcraft и программных пакетов компаний Abobe и Microsoft: After Effects, Illustrator, InDesign, Photoshop, Excel, PowerPoint и Word. Итоговый результат исчисляется в виде усреднённой скорости, которую показывают накопители при прохождении тестовых трасс.

    В тесте PCMark 8, который моделирует работу в реальных приложениях, массив RAID 0 показывает примерно на 20-25 процентов более высокую производительность, нежели одиночные флеш-диски. По всей видимости, примерно на такое улучшение скорости работы и должны рассчитывать те энтузиасты, которых заинтересует предмет этого исследования.

    Интегральный показатель PCMark 8 следует дополнить и показателями производительности, выдаваемыми флеш-дисками при прохождении отдельных тестовых трасс, которые моделируют различные варианты реальной нагрузки.

    Несмотря на то, что в синтетических тестах нам попадались ситуации, в которых массив RAID 0 оказывался медленнее одиночных накопителей, в него входящих, в реальной жизни такие ситуации, скорее всего, не возникнут. По крайней мере, PCMark 8 явно указывает на то, что в любом из популярных приложений RAID 0 работает быстрее. Уровень преимущества массива из пары Kingston HyperX 3K 240 Гбайт перед одним таким накопителем колеблется от 3 до 33 процентов. А у более ёмкой модификации Kingston HyperX 3K 480 Гбайт исследуемый RAID-массив выигрывает ещё сильнее.

    Почему так сложилось в общем и целом

    Ну судите сами, — процессоры обзаводятся ядрами, частотами, кэшем и архитектурой; видеокарты, — числом пиксельных конвейеров, количеством и разрядностью памяти, шейдерными блоками, частотами видеопроцессоров и кое-где даже количеством этих процессоров; оперативная память, — частотами и таймингами.

    Жесткие диски же растут разве что в объеме ибо скорость оборота головки оных (за исключением редких моделей типа Raptor’ов) замерла уже довольно давно на отметке в 7200, кэш тоже не то чтобы растет, архитектура остается почти прежней.

    В общем в плане производительности диски стоят на месте (ситуацию могут спасти разве что развивающиеся SSD), а ведь они играют весомую роль в работе системы и, местами, полновесных приложений.

    В случае же построения единичного (в смысле за номером 1) рейда Вы чуток потеряете в производительности, но зато получите некую ощутимую гарантию безопасности Ваших данных, ибо оные будут полностью дублироваться и, собственно, даже в случае выхода из строя одного диска, — всё целиком и полностью будет находится на втором без всяких потерь.

    В общем, повторюсь, рейды будут полезны всем и каждому. Я бы даже сказал, что обязательны :)

    ⇡#Выводы

    Итак, тестирование массива RAID 0, составленного из твердотельных накопителей показывает, что такая конфигурация имеет право на жизнь. Конечно, это не отменяет наличия у дисковых массивов их традиционных недостатков, но разработчики интегрированных RAID-контроллеров и драйверов проделали очень большую работу и добились того, что многие проблемы таких конфигураций отошли в прошлое. В целом же создание массива RAID 0 — это один из традиционных путей для повышения производительности дисковой подсистемы. Этот приём вполне работает и для SSD, объединение в массив пары дисков действительно позволяет нарастить как линейные скорости, так и быстродействие операций над небольшими блоками с глубокой очередью запросов. Так, в процессе тестов нам удалось получить для массива поистине впечатляющие показатели производительности последовательного чтения и записи, существенно превосходящие пропускную способность интерфейса SATA 6 Гбит/с. При этом твердотельные накопители максимального объёма, как мы увидели в тестах, не всегда обладают лидирующим уровнем быстродействия. Поэтому RAID 0-конфигурации могут быть востребованы и в тех ситуациях, когда стоит задача создания дисковой подсистемы большой ёмкости.

    Надо сказать, что ранее к RAID из SSD мы относились с некоторой опаской, так как RAID-контроллеры блокировали использование команды TRIM, а также не давали наблюдать за состоянием входящих в состав массива накопителей. Однако на данный момент всё это осталось в прошлом, по крайней мере для контроллеров, встроенных в наборы системной логики компании Intel. Сегодня в RAID 0 нормально поддерживается TRIM, а драйвер позволяет свободно следить за S.M.A.R.T.-параметрами входящих в массив SSD.

    Что же касается участвовавших в нашем тестировании накопителей Kingston HyperX 3K, то их 240-гигабайтные модификации показали себя вполне достойным выбором для создания RAID-массивов. Компания Kingston перевела их на более новую, 19-нм память компании Toshiba, и новый аппаратный дизайн позволил несколько улучшить быстродействие, не вызвав при этом никаких неприятных эффектов.

    Пусть основанные на контроллерах SandForce накопители и кажутся далеко не самым свежим решением, но для RAID-массивов они подходят очень даже неплохо. С одной стороны, эти SSD всесторонне проверены и очень надёжны, а с другой — обладают весьма соблазнительной ценой. Что же до производительности, то составленный из двух SandForce-приводов дисковый массив уровня RAID 0, вне всяких сомнений, даст фору любой однодисковой конфигурации. Хотя бы потому, что быстродействие его последовательных операций не ограничивается полосой пропускания интерфейса SATA 6 Гбит/с.

    Когда SSD-кэш будет полезен

    SSD-кэш подходит для ситуаций, когда система хранения данных получает не только последовательную нагрузку, но и определенный процент случайных запросов. При этом эффективность SSD-кэширования будет значительно выше в ситуациях, когда случайные запросы характеризуются пространственной локальностью, то есть на определенном адресном пространстве формируется область «горячих» данных.

    Технология SSD-кэширования будет особенно полезна, например, при работе с потоками в видеонаблюдении. В таком паттерне преобладает последовательная нагрузка, но могут встречаться также случайные запросы на чтение и запись. Если не отрабатывать такие пики при помощи SSD-кэширования, то система будет пытаться справиться с ними при помощи HDD-массива, следовательно, производительность существенно снизится.

    Рисунок 1. Неравномерный временной интервал с непредсказуемой частотой обращений

    На практике появление случайных запросов среди равномерной последовательной нагрузки совсем не редкость. Это может происходить при одновременной работе на сервере нескольких различных приложений. Например, одно имеет установленный приоритет и работает с последовательными запросами, а другие время от времени обращаются к данным (в том числе, повторно) в случайном порядке. Другим примером возникновения случайных запросов может быть так называемый I/O Blender Effect, который перемешивает последовательные запросы.

    Если на СХД поступает нагрузка с большой частотой случайных и мало повторяющихся запросов, то эффективность SSD-кэша будет снижаться.

    Рисунок 2. Равномерный временной интервал с предсказуемой частотой обращений

    При большом количестве таких обращений пространство SSD-накопителей будет быстро заполняться, и производительность системы будет стремиться к скорости работы на HDD-накопителях.

    Следует помнить, что SSD-кэш является довольно ситуативным инструментом, который будет показывать свою продуктивность далеко не во всех случаях. В общих чертах его использование будет полезным при следующих характеристиках нагрузки:

    • случайные запросы на чтение или на запись имеют низкую интенсивность и неравномерный временной интервал;
    • количество операций ввода-вывода на чтение значительно больше, чем на запись;
    • количество «горячих» данных будет предполагаемо меньше размеров рабочего пространства SSD.
    Рейтинг
    ( 1 оценка, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]