В сентябре 2020 года Apple представила три свежих смартфона: iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max. Их главной фишкой, конечно же, оказались камеры, общие принципы работы которых мы обсуждали в отдельном материале. Тем не менее, отдельного внимания также заслужил и процессор новинок. Их «сердцем» стал Apple A13 Bionic, который создан по 7-нанометровому технологическому процессу. Производитель гордится этой цифрой, ведь до неё добрались далеко не все конкуренты. А вот у Xiaomi Redmi 8 Pro чип MediaTek Helio G90T. У него все 12 нм, и кичиться здесь точно нечем…
Лучший Telegram-канал про технологии (возможно)
Вообще, в мире высоких технологий нет ничего быстрее, чем самые проворные микросхемы — процессоры. Они умеют обрабатывать миллиарды операций в секунду, а на их производство уходит настолько много невероятных технологий, что даже становится жутко. Микропроцессоры пошли в массовое производство в 90-х годах прошлого столетия. С того времени они пережили несколько ступеней развития, апогеем которого стало начало 21 века. Именно тогда производителям открылись все основные свойства кремния, и это дало возможность получать максимальную эффективность при минимальных затратах.
Сегодня темпы развития процессоров стремительно падают. Кремниевые технологии быстро приближаются к пределу своих физических возможностей. Да, их частоты всё ещё увеличиваются, но эффективность работы находится в стагнации. Про это в разрезе смартфонов и не только мы расскажем в данной статье.
Что собой в принципе представляет каждый микропроцессор
Каждый микропроцессор представляет собой специальную интегральную схему, которая расположена на микроскопическом кристалле кремния. Этот материал используется только из-за того, что обладает свойствами полупроводников: он проводит электроэнергию быстрее диэлектриков и медленнее металлов. Его можно сделать и изолятором, который останавливает движение зарядов, и проводником, который зажигает для них зелёный свет. Этим параметром получится управлять с помощью специальных примесей.
Внутри микропроцессора нашлось место для миллионов транзисторов, которые объединены невероятно тонкими проводниками. Для их производства используют алюминий, медь и другие материалы — они предназначены для того, чтобы переваривать информацию. Из них складываются внутренние шины, которые дают процессору возможность работать с математическими и логическими операциями, а также управлять остальными микросхемами устройства в общем и целом.
Одним из самых важных параметров качества микропроцессора всегда была частота работы его кристалла. Именно она определяет число действий, которые могут выполняться за отведённое время — это зависит от того, насколько быстро транзисторы могут переходить из закрытого состояния в открытое. На это далеко не в последнюю очередь влияет технология производства кремниевых пластин — основного компонента процессоров. Чем они меньше, тем разогнать их частоту обычно можно до больших значений.
Технологический процесс, который используется при производстве микропроцессоров, влияет на их размер. Если обрезать количество нанометров, о котором сегодня все говорят, можно уменьшить габариты самого чипа. Это сделает его не только более быстрым — он будет выделять меньше тепла и расходовать меньше энергии. Данные показатели всегда были очень важны в полноценных компьютерах, но теперь выходят чуть ли не на первое место и в современных смартфонах.
Что на самом деле означает «нм»
ЦП изготавливаются с помощью фотолитографии, когда изображение ЦП вытравливается на кусок кремния. Точный метод того, как это делается, обычно называется технологическим узлом и измеряется тем, насколько маленькими транзисторы может делать производитель.
Поскольку меньшие транзисторы более энергоэффективны, они могут выполнять больше вычислений, не перегреваясь, что обычно является ограничивающим фактором для производительности процессора. Это также позволяет использовать кристаллы меньшего размера, что снижает затраты и может увеличить плотность при тех же размерах, а это означает больше ядер на кристалл. 7 нм фактически вдвое плотнее, чем предыдущий 14-нм узел, что позволяет таким компаниям, как AMD, выпускать 64-ядерные серверные чипы, что является значительным улучшением по сравнению с их предыдущими 32 ядрами (и 28 ядрами Intel).
Однако важно отметить, что, хотя Intel все ещё использует 14-нм узел, а AMD собирается в ближайшее время выпустить свои 7-нм процессоры, это не означает, что AMD будет в два раза быстрее. Производительность не соответствует размеру транзистора, и в таких малых масштабах эти числа уже не так точны. То, как каждое предприятие по производству полупроводников измеряет, может варьироваться от одного к другому, поэтому лучше воспринимать их скорее как маркетинговые термины, используемые для сегментации продуктов, чем точные измерения мощности или размера. Например, ожидается, что будущий 10-нм узел Intel будет конкурировать с 7-нм узлом TSMC, несмотря на то, что цифры не совпадают.
Какие этапы проходят процессоры во время производства
Даже если верить «Википедии», производство процессоров можно разделить на полтора десятка этапов. Мы решили вкратце расписать каждый из них именно для того, чтобы стало понятно, насколько сложный это процесс. В реальности же он ещё более замысловатый, уж поверьте.
1. Механическая обработка. На этом этапе производитель готовит пластины проводника с определённой геометрией и кристаллографической ориентацией, которая не может отличаться от эталона более чем на 5%. Отдельного внимания также заслуживает класс чистоты поверхности.
2. Химическая обработка. В рамках этого этапа с поверхности удаляются все мельчайшие неровности, которые были созданы во время механической обработки. Для этого, а также для получения необходимых нюансов формы используют плазмохимические методы, а также жидкостное и газовое травление.
3. Эпитаксиальное наращивание. В данном случае проходит добавление слоя полупроводника — осаждение его атомов на подложку. Именно на этом этапе образуется кристаллическая структура, аналогичная структуре подложки, которая часто выполняет роль только лишь механического носителя.
4. Получение маскировки. Чтобы защитить слой полупроводника от последующего проникновения примесей, на этом этапе на него добавляется специальное защитное покрытие. Это происходит путём окисления эпитаксиального слоя кремния, которое становится возможным за счёт высокой температуры или кислорода.
5. Фотолитография. На этом этапе на диэлектрической плёнке создаётся необходимый рельеф. Если до данного этапа в этом пункте статьи вы мало что вообще поняли, то наша задача выполнена — вы осознали, насколько сложно создать процессор, и можете двигаться к следующему пункту.
6. Введение примесей. Здесь речь, конечно же, про электрически активные примеси, которые нужны для образования изолирующих участков, а также электрических переходов, источниками которых могут быть твёрдые, жидкие и газообразные вещества. Для этого используется метод диффузии.
7. Получение омических контактов. Кроме этого, на данном этапе также создают пассивные элементы на пластине. Для этого используется фотолитографическая обработка на поверхности оксида, который покрывает области успешно сформированных структур.
8. Добавление слоёв металла. На этом этапе будущий процессор получает несколько дополнительных слоёв металла, общее количество которых может лихо отличаться и зависит от его уровня. Между ним нужно расположить диэлектрик, в котором есть сквозные отверстия.
9. Пассивация поверхности. Чтобы правильно протестировать кристалл, нужно максимально сильно очистить его от любых возможных загрязнений. Чаще всего это происходит в деионизированной воде на установках гидромеханической или кистьевой отмывки.
10. Тестирование пластины. Для этого обычно используются зондовые головки, которые установлены на специальных установках, используемых для разбраковки пластин. Кстати, до этого самого момента они находятся в неразрезанном на отдельные части состоянии.
11. Разделение пластины. На этом этапе пластину механически разделяют на отдельные кристаллы. Сейчас это делают не только из-за удобства, но и по причине поддержания электронной гигиены. В её рамках в воздухе должно быть критически малое количество пыли, а в процессе разрезания она появится.
12. Сборка кристалла. На этом этапе готовый кристалл упаковывают в специальный корпус, который в дальнейшем герметизируют. Здесь к нему также подключают все необходимые выводы, которые нужны для его дальнейшего использования — это практически готовый чип.
13. Измерения и испытания. На данном этапе происходит проверка чипа на соответствие заданным техническим параметрам. Да, даже в настолько точном и высокотехнологическом производстве случается брак, который возрастает при увеличении сложности задачи. Отсюда и немаленькая цена.
14. Контроль и маркировка. Это пара финальных этапов в производстве чипов. В данном случае их снова проверяют, потом наносят на них специальное защитное покрытие, а также упаковывают, чтобы доставить готовое изделие конкретному заказчику.
Разорение производств
Чип состоит из множества транзисторов, играющих роль переключателей. Много десятилетий прогресс интегральных схем соответствовал закону Мура, по которому плотность транзисторов на устройстве удваивается в срок от 18 до 24 месяцев.
В подобном ритме производители вводили новые техпроцессы с большей плотностью транзисторов, что позволяло индустрии снижать стоимость чипов в пересчёте на количество транзисторов. На каждом техпроцессе производители масштабировали спецификации транзисторов в 0,7 раз, позволяя индустрии увеличивать производительность на 40% при том же энергопотреблении и при двукратном уменьшении площади.
Индустрия интегральных схем следовала этой формуле и процветала. С 1980-х годов она прокладывала путь к быстрым ПК по снижающимся ценам.
К 2001 году существовало уже не менее 18 производителей с фабриками, где они могли производить чипы на 130 нм, что в то время было передовым техпроцессом, согласно IBS. Также тогда появлялось ещё несколько новых производителей, делавших чипы на заказ на чужих фабриках. Кроме того, практиковалось производство чипов для лабораторий, их разрабатывавших, но не имевших собственного производства.
К концу десятилетия стоимость производства и техпроцессы рванули ввысь. Не справившись с ростом цен, многие производители чипов перешли на модель fab lite. Они производили некоторые чипы у себя, а остальные отдавали на аутсорс.
Со временем всё меньше производителей чипов делали передовые устройства на собственных мощностях. Некоторые полностью избавились от производств или вышли из этого бизнеса.
Тем не менее, в 2000-х появилась бизнес-модель кремниевых мастерских. Мастерские отставали от Intel и других компаний по технологиям, но давали проектным компаниям доступ к различным процессам.
Следующее крупное изменение случилось на этапе в 20 нм, когда традиционные планарные транзисторы упёрлись в стенку и столкнулись с эффектом короткого канала . В ответ Intel в 2011 году перешла на транзисторную технологию следующего поколения, finFET, на 22 нм. Мастерские перешли на finFET на 16/14 нм.
У finFET есть несколько преимуществ по сравнению с планарными транзисторами.
«В этой схеме весь транзистор вытягивается по вертикали так, что канал возвышается над подложкой, и вентиль обёртывается вокруг трёх сторон плавника. Увеличенная площадь контакта вентиля позволяет лучше контролировать ток утечки», — пишут Мэтт Когорно и Тошихико Мияшита из Applied Materials. Когорно – директор глобального менеджмента продукта, а Мияшита – главный технолог.
FinFET ещё и более сложные устройства, их сложнее производить и масштабировать на каждый следующий техпроцесс. В итоге, стоимость R&D выросли до небес. Так что теперь ритм полноценной смены техпроцесса вырос с 18 месяцев до 2,5 лет и более.
Цены на интегральные схемы также продолжают расти. Стоимость разработки планарного устройства на 28 нм разнится от $10 млн до $35 млн, как пишет Gartner. Для сравнения, стоимость проектирования однокристальной системы (SoC) на 7 нм разнится от $120 млн до $420 млн.
«Стоимость разработки сильно зависит от сложности SoC,– сказал Сэмюел Вэн, аналитик из Gartner. – Две трети уходят на разработку чипа. Остальное – разработка ПЛ, стоимость масок и улучшение выхода. Со временем стоимость проектирования тоже падает».
Тем не менее, тенденции цен изменили ландшафт мира интегральных микросхем. Со временем всё меньше компаний могут позволить себе оплачивать проектирование чипов для самых передовых техпроцессов. Многие из них полагаются в вопросах производства на мастерские.
Уменьшение количества клиентов вместе с ростом стоимости производства повлияли на ландшафт мастерских, производящих передовые чипы. К примеру, на рынке 16/14 нм осталось пять производителей/мастерских: GlobalFoundries, Intel, Samsung, TSMC и UMC. SMIC также работает с finFET на техпроцессе 14 нм.
А на 7 нм случился другой переход. Техпроцессы и стоимость производства продолжали расти, а прибыль на инвестиции была уже под вопросом. В итоге GlobalFoundries и UMC в прошлом году прекратили попытки разработать техпроцесс на 7 нм. Обе компании продолжают работать на рынке 16/14 нм.
Пытаясь развиваться дальше, Samsung и TSMC на полной скорости мчатся к рубежу 7 нм и за его пределы. После нескольких задержек, Intel планирует запустить производство на 10 нм в середине 2019 года, а на 7 гм – к 2021-му. SMIC тем временем не обещает никаких сроков.
Но не всем клиентам мастерских требуются передовые техпроцессы. Существует процветающий рынок для чипов на 28 нм.
«Всё зависит от характеристик продукта, — сказал Вэн из Gartner. – Некоторым продуктам требуется максимальное быстродействие. Разработчики всё ещё могут использовать устаревшие техпроцессы. А чипы для применений, не требующих высокой производительности, могут жить и на техпроцессах N-1 и N-2».
Ему вторят другие.
«Сколько компаний могут позволить себе новейший кремний сегодня с экономической точки зрения? Их количество уменьшается. На рынках, требующих чрезвычайно высокого быстродействия такая потребность будет всегда. Но в цепочке поставок, с точки зрения объёмов, в середине образуется разлом. Самым требовательным клиентам требуются техпроцессы на 7, 5, а возможно, когда-нибудь и 3 нм. Но все остальные немного притормозили», — сказал Уолтер Ын, вице-президент по бизнес-управлению в UMC.
Но в определённых случаях существует необходимость в самых передовых чипах – это серверы и смартфоны. Также появляется море новых стартапов, связанных с ИИ-чипами. Многие компании проектируют чипы для машинного обучения и глубокого обучения.
«Никто не спорит, что потребность считать что-либо в 10 раз быстрее, чем сегодня, всегда будет коммерчески полезной и конкурентоспособной, даже на не технических рынках. Тому свидетельством являются все эти уникальные достижения технологии глубокого обучения. Запросам на всё большую компьютерную мощность буквально не видно конца», — сказал Аки Фуджимура, директор D2S.
«Запросы на вычислительные мощности испытывали несколько крупных сдвигов – сначала это были GPU, а позднее – глубокое обучение, — сказал Фуджимура. – Глубокое обучение – это массивная технология поиска подходящих закономерностей, а обучение нейросетей – это задача последовательной оптимизации. Сейчас, когда мир придумал механизм обработки огромного количества данных и превращения их в полезную информацию в виде программы, способной к логическим умозаключениям, количество необходимых вычислений растёт вместе с количеством доступных данных. А поскольку количество данных во всех областях растёт в геометрической прогрессии, требования к вычислительным мощностям гарантированно значительно вырастут как минимум в области глубокого обучения».
Требуют ли чипы ИИ техпроцессов в 5 нм и дальше, остаётся неясным, но требования к увеличению вычислительных мощностей определённо существуют. Но миграция на эти техпроцессы не становится более лёгким или дешёвым процессом.
Хронология уменьшения размера технологического процесса
’70-е:
- 3 мкм — такого технологического процесса компания Zilog достигла в 1975 году, Intel — в 1979-м.
’80-е:
- 1,5 мкм — Intel уменьшила технологический процесс до этого уровня в 1982 году;
- 0,8 мкм — уровень Intel в конце 1980-х.
’90-е:
- 0,6–0,5 мкм — компании Intel и IBM находились на этом уровне в 1994–1995 годах;
- 350 нм — Intel, IBM, TSMC к 1997-му;
- 250 нм — Intel, 1998 год;
- 180 нм — Intel и AMD, 1999 год.
’00-е:
- 130 нм — этого уровня компании Intel, AMD достигли в 2001–2002 годах;
- 90 нм — Intel в 2002–2003 годах;
- 65 нм — Intel в 2004–2006 годах;
- 45–40 нм — Intel в 2006–2007 годах;
- 32–28 нм — Intel в 2009–2010 годах;
- 22–20 нм — Intel в 2009–2012 годах;
’10-е:
- 14–16 нм — Intel наладила производство таких процессоров к 2015 году;
- 10 нм — TSMC делала такие процессоры уже в 2016-м, а Samsung — в 2020 году;
- 7 нм — TSMC, 2020 год;
- 6 нм — TSMC только анонсировала такой технологический процесс в 2019 году;
- 5 нм — TSMC начала тестирование такого техпроцесса в 2019 году;
- 3 нм — Samsung обещает делать процессоры с таким технологическим процессом к 2021 году.
Откуда у Apple 5 нанометров
Компания Apple занимается исключительно разработкой своих процессоров, но не их производством. В работе над А14 принимали участие ее собственные специалисты, а выпуском, за неимением у Apple заводов по из производству, займется тайваньская компания TSMC.
В плане топологии аналогов у А14 в мире пока нет
5-нанометровый техпроцесс TSMC полностью освоила в 2020 г., и она стала одной из первых компаний, готовых к выпуску соответствующих чипов. Конкуренцию ей в этом плане составляет пока лишь Samsung.
- Первый в России ИТ-маркетплейс Market.CNews для Вашего бизнеса. С ценами на ИТ-услуги от сотен поставщиков
- Короткая ссылка
- Распечатать
Чем меньше нанометров в технологическом процессе, тем:
Выше скорость работы. В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.
Ниже выделение тепла. Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка. При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.
Меньше потребление энергии. В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах. Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.
В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2020 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.